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The number of periodic arrangements of point vortices – point vortex streets – in two-
dimensional fluid flow that are stationary is known to be finite for a generic choice
of vortex circulations. When all circulations are the same in absolute value, however,
stationary vortex street configurations have been associated with the zeros of certain
trigonometric polynomials containing free complex parameters. The presence of these
parameters may prove useful in constructing point vortex models of shear layers and
wakes. In this paper it is shown that such a continuum of stationary configurations
exists in a much wider class of point vortex street systems. The circulations may
take on many values, not just two, providing increased flexibility in the modelling
context. A simple method for computing these configurations is derived. The effects of
symmetries on the solution polynomials are described, and illustrated with examples.
In addition, novel translating vortex street configurations are found having arbitrary
translation velocity and containing free parameters for vortex circulations ±1 and
also for vortex circulations +1, −2.

1. Introduction
Stationary configurations of point vortices have been a subject of investigation for

over a century (Aref et al. 2003). Besides their intrinsic interest, they figure in the
dynamics of point vortices as critical points of the vortex interaction energy. Periodic
configurations of point vortices, or point vortex streets, form simple finite-dimensional
models of shear layers, jets and wakes in a two-dimensional ideal fluid. In this context,
the stationary periodic configurations represent steady or quasi-steady fluid motions.
Two classical examples are a single row of identical point vortices modelling a
shear layer, and the Kármán vortex street model of the wake behind a bluff body.
Both configurations are unstable, but can persist for surprisingly long times before
succumbing to unstable modes. More generally, vortex streets containing point vortices
of varying strengths can model shear layers with some initial internal structure, or
the more ‘exotic’ wakes found behind oscillating bluff bodies (Aref, Stremler & Ponta
2006) or the multiple oscillating airfoils encountered in insect flight (Wang 2005).
The shear layer models use stationary periodic configurations, while the wake models
involve configurations in which all vortices move uniformly in the periodic direction.

All stationary and translating configurations containing two or three vortices per
period have been described in detail (Stremler 2003), but very few such configurations
are known when the number n of vortices per period is greater than 3. It is known that
there are (n − 1)! stationary configurations for generic choice of vortex circulations
(O’Neil 1987, 2006).
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Non-periodic systems of point vortices in which all circulations are the same in
absolute value have a characteristic that differs markedly from the generic case.
Namely, stationary configurations are formed by the zeros of polynomials that have
free complex parameters, so that the set of configurations is a continuum rather than
finite. These polynomials satisfy certain differential equations. The first to write down
a differential equation in the context of vortices was Tkachenko (1964), although this
equation had been analysed much earlier (Burchnall & Chaundy 1930). Further work
can be found in Bartman (1983), Kadtke & Campbell (1987), Loutsenko (2003, 2004),
O’Neil (2006). Recently these solutions were extended to a parametrized family of
trigonometric polynomials, creating stationary periodic point vortex configurations
(Loutsenko 2003). In the context of flow models, the presence of free parameters gives
greatly increased flexibility in matching the model system to the non-singular fluid
flow of interest.

In this paper it is shown that these versatile continua of stationary configurations
exist in a much wider class of point vortex street systems. Some are quite simple,
e.g. the configuration with vortices of circulation −1 at locations n and n + 1/2 in
the complex plane, and of circulation 2 at n + z and n − z for every integer n; this
configuration is stationary for all non-zero values of the complex parameter z. When
the imaginary part of z is large, this gives the appearance of three distinct shear layers,
while small values cause the layers to merge in various ways. Other configurations
exist with arbitrarily large numbers of vortices in each period. The vortex circulations
may take on many different values, the chief restrictions being that all must be of the
same sign except one, and that they must be half-integral multiples of the exceptional
circulation. Thus a wide variety of new periodic point vortex configurations, all with
a free parameter, are available to create heterogeneous (rather than homogeneous,
identical-vortex) models of shear layers.

The next two sections of this paper introduce the necessary background and not-
ation, as well as the main tool used in this work: a differential equation for polyno-
mials representing vortex street configurations, equation (3.1) below (O’Neil 2006). Use
of this differential equation in § 4 allows known closed-form expressions for stationary
configurations of vortex streets of circulation ±1 to be modified, creating new families
of translating configurations with arbitrary common velocity. Section 5 establishes
sufficient conditions for using one solution to (3.1) to create an independent second
solution which can be combined with the first to yield a solution with a free complex
parameter. An effective method for computing these solutions is then derived, and
examples presented. The analysis shows that each family of stationary configurations
transforms to a configuration that translates uniformly, i.e. all vortices have the
same velocity, for a limiting value of the complex parameter. Thus translating
configurations, such as those described in § 4, form a convenient starting point for the
computation. The effect of symmetries on the solution polynomials is described in § 6.
Finally, a novel set of translating periodic configurations with circulations 1 and −2
and arbitrary translation velocity are described in § 7. These configurations also have
a free complex parameter and form a continuum, so that the corresponding stationary
configurations have two free complex parameters. The last section summarizes the
results obtained and suggests a few directions for further work.

2. An algebraic system of equations for periodic point vortex equilibria
Given a complex number z and a (complex) period L, the simplest periodic config-

uration of point vortices consists of a point vortex of (real) circulation Γ at location
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z+mL in the complex plane for every integer m ∈ Z. The position z is only meaningful
modulo LZ so we may use the ‘complex cylinder coordinate’ u = exp(2πiz/L) to
describe this configuration without ambiguity. Note that addition of a constant to
all vortex positions corresponds to multiplication of u by a non-zero constant, and
z → i∞ corresponds to u → 0.

More generally, a periodic arrangement of point vortices is described by vortex
circulations Γj , vortex positions zj + LZ and cylinder coordinates uj = exp(2πizj/L),
1 � j � n. The velocity vj of the vortex of circulation Γj at position zj + mL is
independent of m, so that the dynamics preserves the periodicity of the vortex array:

2πi v̄j =
∑
k:k �=j

Γk

L
π cot πL−1(zj − zk), (2.1)

where the bar represents complex conjugation; see e.g. (Aref et al. 2003). Because the
vortices at positions zj + LZ move in unison, they will be considered to be a single
entity termed a point vortex street; thus equations (2.1) describe the dynamics of a
system of n point vortex streets. (This non-standard terminology greatly simplifies
much of the subsequent discussion; alternatively one may describe a street as a single
point vortex on the cylinder C/LZ.) By a simple change of scale, we set L = 1 and
supress it from subsequent formulae. In terms of the coordinates uj equation (2.1)
takes the form

2v̄j =
∑
k:k �=j

Γk

uj + uk

uj − uk

. (2.2)

The right-hand side of (2.2) is homogeneous in the uj , corresponding to the invariance
of (2.1) under translation zj �→ zj + c. Note too that equations (2.1) and (2.2) are
invariant under the two involutions zj �→ −z̄j , uj �→ ūj , vj �→ v̄j and zj �→ z̄j ,
uj �→ 1/ūj , vj �→ −v̄j , as well as their composition zj �→ −zj , uj �→ 1/uj , vj �→ −vj .
These involutions correspond to reflections in the y-axis, the x-axis and the origin
respectively.

A translating point vortex street configuration has vj = v �= 0 in (2.2) for all j . Since
multiplying (2.1) or (2.2) by Γj and summing shows

∑
j Γjvj = 0, it follows that a

translating configuration must be neutral, i.e. the total circulation S :=
∑

j Γj is zero.
A stationary configuration has all vj = 0 and may be non-neutral (have non-zero S.)

Assume that u1, . . . , un are distinct complex numbers and u is a complex variable.
Using the identity

uj + uk

(u − uj )(u − uk)
=

uj + uk

uj − uk

(
1

u − uj

− 1

u − uk

)

and equation (2.2), it is easy to verify the relation

1

2

∑
j �=k

ΓjΓk

uj + uk

(u − uj )(u − uk)
=

∑
j

Γj

u − uj

(2v̄j ). (2.3)

Consequently a translating or stationary configuration will satisfy:

1

2

∑
j �=k

ΓjΓk

uj + uk

(u − uj )(u − uk)
− 2v̄

∑
j

Γj

u − uj

= 0. (2.4)

This relation can hold even when the uj are not all distinct, and (2.2) is singular.
Multiplication of (2.4) by (u − u1) · · · (u − un) gives a polynomial in u on the left-hand
side, the coefficients of which are homogeneous polynomials in the uj . For example
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Figure 1. Stationary vortex street configurations for circulations Γ1 = −2/3, Γ2 = −2, Γ3 = 7/2,
Γ4 = 1. The configurations have period 1, and a portion of the plane containing three periods
is depicted. Vortices with circulation Γ1 are denoted by the symbol 1, etc. The upper picture
corresponds to two configurations (as shown, and reflected in the x-axis) and the lower
corresponds to four (as shown, and reflected in the y-axis, the x-axis and the origin.)

when n= 4 equation (2.4) reduces to three coefficient equations: one linear, one qua-
dratic and one cubic. Given generic values of the circulations, there are six equivalence
classes of solutions [u1, u2, u3, u4] (modulo multiplication of all uj by a non-zero
complex number). For each solution, if the uj are distinct then they satisfy (2.2); if in
addition they are all non-zero then they are cylinder coordinates for a stationary or
translating point vortex street configuration. A typical solution set for a non-neutral
stationary configuration of four streets is displayed schematically in figure 1. It can
be seen in the upper part of the figure that the real parts of all the vortex positions
are multiples of 1/2, corresponding to the fact that each uj is real. Some streamlines
of the fluid flow for these configurations are displayed in figure 2.

The coefficient equations obtained from equation (2.4) form a minimal polynomial
system (O’Neil 2006) for stationary and translating configurations: Bezout’s theorem
implies that the total number of solutions to (2.4), when finite, is (n−1)!, and for topo-
logical reasons this is the number of stationary configurations when all circulations
are positive (Montaldi, Soulière & Tokieda 2003). Thus there is no system of poly-
nomials in the uj of lower total degree with zero set corresponding to stationary
or translating states. However for some circulation values the solution set is infinite,
e.g. Γ1 = Γ2 = 2, Γ3 = Γ4 = −1, [u1, u2, u3, u4] = [t, t−1, 1, −1] where t is a free complex
parameter. This example was mentioned in the introduction, and is a member of a
family of stationary configurations of arbitrary complexity (Aref et al. 2003).

If one or more uj is zero, say for m<j � n, then it is easy to show that (2.4) is also
satisfied by [u1, . . . , um, 0] where the last vortex has circulation Γm+1 + · · · + Γn. That
is, all the vortices at z = i∞, u =0, can be lumped together. Equation (2.2) shows that
the effect of this street on the others is that of a uniform flow. Likewise, a translating
configuration of vortex streets with real common velocity v can be converted to a
solution of (2.2) with all vj =0 by adding a street with circulation −2v at u =0; note
that the newly added street has zero velocity in (2.2) because the original translating
configuration necessarily has zero total circulation.
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Figure 2. Streamlines for the two stationary configurations of figure 1. There are four
stagnation points per period.

3. A differential equation for vortex street equilibria
Often a vortex street system will have several streets with the same circulation.

Suppose the circulations take the distinct values Γα , 1 � α � s. Consider the s poly-
nomials Pα(u) =

∏
(u−uj ) where each product is taken over those indices j satisfying

Γj = Γα; thus the roots of Pα are the cylinder coordinates of all vortices with circulation
Γα . The objective of this section is to show that equation (2.4) is satisfied if and only
if these polynomials satisfy the differential equation (O’Neil 2006)

u

(∑
α

Γ 2
α

P ′′
α

Pα

+ 2
∑
α<β

ΓαΓβ

P ′
αP

′
β

PαPβ

)
+

∑
α

Γα(Γα − 2v̄ − S)
P ′

α

Pα

= 0. (3.1)

Multiply this equation by P1 · · · Ps to see that it is linear in each Pα separately; in
fact, it is a special case of Loutsenko’s multilinear hypergeometric operator, which
has been studied in the case s = 2 (Loutsenko 2003). Equation (3.1) is one of several
differential equations that can be used to study relative equilibria of various vortex
systems (Aref et al. 2003; Aref & Van Buren 2005; O’Neil 2006).

Because each Pα is a polynomial in u, so is the entire left-hand side of (3.1) after
clearing denominators. Thus setting the coefficients equal to zero produces a system
of polynomial equations in the coefficients of each Pα , a system that is sometimes
easier to solve than the system derived from (2.4). The vortex street configurations
can then be obtained by finding the roots of each of the Pα . Several examples of this
process are given below. In addition, a simple calculation shows that the function
(2πi)−1 log(Q(u)) − (S/2) z, where Q(u) =

∏
P Γα

α , is a complex potential function for
the flow in the complex plane due to the vortex street configuration. Thus the potential
can be determined directly from the polynomial solutions to (3.1), without the need
to compute the roots.
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3.1. Equivalence of the differential equation and equation (2.4)

To obtain the differential equation from equation (2.4), first rewrite the double sum:

1

2

∑
j �=k

ΓjΓk

uj + uk

(u − uj )(u − uk)
=

∑
j

(
Γjuj

u − uj

∑
k:k �=j

Γk

u − uk

)

=

(∑
j

Γjuj

u − uj

) (∑
k

Γk

u − uk

)
+

d

du

(∑
j

Γ 2
j uj

u − uj

)
. (3.2)

Because of the identity

∑
j

Γ
p
j uj

u − uj

= u

(∑
j

Γ
p
j

u − uj

)
−

∑
j

Γ
p
j

for exponents p = 1, 2, equation (2.4) is therefore equivalent to(
−2v̄ − S + u

∑
j

Γj

u − uj

) (∑
k

Γk

u − uk

)
+

d

du

(
u

∑
j

Γ 2
j

u − uj

)
= 0. (3.3)

In order to express this relation using only the polynomials P1, . . . , Ps , observe that

∑
j

Γ
p
j

u − uj

=
∑

α

Γ p
α

P ′
α

Pα

for p = 1, 2, and

d

du

(
u

∑
j

Γ 2
j

u − uj

)
=

∑
α

Γ 2
α

P ′
α

Pα

+ u
∑

α

Γ 2
α

P ′′
α

Pα

− u
∑

α

(
ΓαP

′
α

Pα

)2

.

Substitution of these identities into (3.3) yields (3.1).
In summary, if P1, . . . , Ps satisfy (3.1) with S =

∑
α Γα deg(Pα) and the roots of

these polynomials are all distinct and non-zero, then these roots are the cylinder
coordinates of a point vortex street configuration that is translating with velocity v

(in the neutral case) or is stationary (non-neutral case.)
The invariance of (2.1) and (2.2) under reflections noted in § 2 extends to (3.1) in the

following way. Suppose that P1, . . . , Ps satisfy (3.1) with no roots at zero. Since the
mapping uj �→ 1/uj takes each polynomial Pα to a non-zero constant times its reversal

R(Pα) := udeg Pα Pα(1/u),

the invariance of (2.2) under uj �→ 1/uj , vj �→ −vj shows that (3.1) is invariant under
the involution Pj �→ R(Pj ), v �→ −v.

3.2. Solving the differential equation for small s

The left-hand side of the differential equation (3.1), after clearing denominators, is
clearly a polynomial in u of degree no greater than n − 1; in fact, the coefficient of
un−1 is zero so that it is actually of degree n − 2. Thus its vanishing is equivalent to
a system of n − 1 nonlinear algebraic equations in the coefficients of the unknown
polynomials Pα . Each equation has degree s and is linear in each variable separately.
When the number of polynomials (or the degrees of some of the polynomials) is
large, the system is intractable. On the other hand, less complex cases can sometimes
be solved exactly with very little difficulty.
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Figure 3. Streamlines of several translating neutral configurations as they appear in a frame
moving with the vortices. All the positive vortices have circulation 1; from the top, Γ1 has the
value −1, −2 and −3.

Consider a system of vortex streets where the first has circulation Γ1 and all the
rest have circulation Γ2, so that s = 2 and deg(P1) = 1. Multiplying the uj by an appro-
priate non-zero constant, we may assume u1 = 1 so that P1 = u − 1. The differential
equation (3.1) then becomes a linear system for the n−1 coefficients of P2; an explicit
formula for this solution polynomial is given in equation (6.2) below. If the street
system is neutral, e.g. Γ1 = 1 − n and Γ2 = 1, one obtains a translating configuration
in which the velocity is a parameter. These configurations can be used as a starting
point for the construction described in § 5. The simplest configuration, with n= 2,
is the elementary alternating-vortex model of the wake of a bluff body; setting the
common velocity v to the value 0.354 gives the Kármán wake. Larger values of n

produce configurations where the positive vorticity is equally distributed among more
numerous, weaker vortices. Figure 3 shows the streamlines of the fluid flow induced
by several such configurations, as they appear in a frame in which the vortices are
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Figure 4. Streamlines of a translating neutral configuration as viewed in a frame moving
with the vortices. All positive vortices have circulation 1, and all negative ones have
circulation −3/2.

at rest. In this frame the complex potential for the flow is

(2πi)−1 log(Q(u)) − vz = (2πi)−1 log(Q(u) u−v),

so that the streamlines are the level sets of ln |Q(u) u−v|. In order to keep a constant
ratio of velocity to vorticity per period, the velocity parameter used for each configura-
tion pictured is v =0.354(n−1). The n stagnation points in each plot are clearly visible.

It is only a little harder to solve (3.1) when s = 2 and there are two streets with
circulation Γ1, i.e. the polynomial P1 is quadratic. We may take P1 = (u − 1)(u − x)
so that the differential equation reduces to a system of quadratic equations, linear in
x and also linear in the unknown coefficients of P2. The system can be reduced to a
single polynomial equation in x alone, and the value of x determines P2. A neutral
translating configuration with two negative and three positive vortices per period
found in this way is shown in figure 4. The normalized velocity is the same as in the
previous figure.

Now consider the case s = 3. Suppose there are n − 2 vortices of circulation Γ1 and
one each of circulations Γ2 and Γ3 per period. We may put P2 = u − 1, P3 = u − x and
solve for unknowns x and P1 = un−2 + an−3u

n−3 + · · · + a0. Again the system of equa-
tions is in effect a collection of recursion relations for the coefficients aj . Specifically,
the equation corresponding to the highest power of u in (3.1) involves only x and an−3,
so that an−3 may be written as a linear polynomial in x; the next equation may be
solved for an−4 as a function of x and an−3, so that an−4 is a quadratic function of x, and
so on. Thus all the equations but one may be viewed as determining P1 from x. The fi-
nal equation (i.e. the one obtained from (3.1) by setting u =0) then reduces to a polyno-
mial of degree n−1 in x alone. Each of the n−1 solutions for x then determines a cor-
responding polynomial P1. Since P1 has n−2 roots corresponding to identical vortices,
one obtains by permutation the complete set of (n − 1)! solutions to equation (2.4).

For example, take n= 5, (Γ1, Γ2, Γ3) = (1, −4/3, −5/3) and 2v̄ = 1/2 in (3.1). A
minimal rearrangement of the coefficient equations yields the system

a2 = (20 + 35x)/27,

a1 = (−a2 − x(135 − 2a2))/90,

a0 = (14a1 + x(5a1 − 54a2))/189,

0 = 11 x4 − 5956 x3 − 8934 x2 − 6868 x − 13.
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Changing circulations to (Γ1, Γ2, Γ3) = (1, −1/2, −5/2) and 2v̄ to 5 produces the
system:

a2 = −(9 + 25 x)/24,

a1 = (11a2 + x(24 − 21a2))/56,

a0 = (13a1 + x(−3a1 + 8a2))/32,

0 = (99 x2 − 58 x + 99)(35 x2 − 154 x + 195).

Observe that the quartic polynomial for x factors into two quadratics; this simplifies
the final expressions for x and P1. This example will be continued in § 5.3.

4. Loutsenko’s stationary configurations and related translating configurations
If there are only two values of circulations, Γ2/Γ1 = Γ , then with the simplified

notation P1 = p, P2 = q and (2v̄ + S)/Γ1 =χ , equation (3.1) takes the form

u(p′′q + Γ 2p q ′′ + 2Γp′q ′) + (1 − χ)p′q + Γ (Γ − χ)p q ′ = 0. (4.1)

Loutsenko constructed trigonometric polynomials with roots corresponding to non-
neutral stationary (S �= 0, v = 0) configurations of vortex streets where all vortex circu-
lations have the same absolute value, i.e. Γ = −1 (Loutsenko 2003). The polynomials
contain complex parameters and so establish a continuum of configurations. It will
now be shown that each such configuration is connected via a certain limit to a neu-
tral translating configuration, and that the same construction can produce translating
configurations with arbitrary velocity.

Let a0, . . . , an be distinct positive integers and c0, . . . , cn be complex numbers.
Define the functions f (z) and g(z) to be the Wronskian determinants

f (z) = det

[
dk

dzk
sin π(ajz + cj )

]
0�j, k�n−1

,

g(z) = det

[
dk

dzk
sin π(ajz + cj )

]
0�j, k�n

.

Then the zeros of f and g correspond to the location of negative and positive unit
circulation vortices respectively in a stationary configuration of point vortex streets.
These functions may be expressed in terms of the cylinder coordinates uj = exp(2πizj ).
Writing dj = exp(2πicj/aj ) �= 0, yields

2i
dk

dzk
sin π(ajz + cj ) = (dju)−aj /2((dju)aj − (−1)k)(iπaj )

k.

After some manipulation it is found that the cylinder coordinates of the zeros of f (z)
and g(z) are exactly the zeros of polynomials q(u) and p(u) respectively:

q(u) = det
[
((dju)aj − (−1)k)ak

j

]
0�j, k�n−1

, (4.2)

p(u) = det
[
((dju)aj − (−1)k)ak

j

]
0�j, k�n

. (4.3)

Since all dj are non-zero, deg(q) = a0 + · · ·+an−1 and S = deg(p)−deg(q) = an. Hence
p, q satisfy (4.1) with Γ = −1, χ = an. Now (4.1) is satisfied for all values of the
constants cj , so take the limit cn → i∞, that is, dn → 0. In this limit the polynomial
p has degree a0 + · · · + an−1 (an of the roots having diverged to infinity) so that
p, q now satisfy (4.1) with the same parameters Γ = −1, χ = an but now 2v̄ = χ
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and S =0. Physically, an of the positive vortex streets have moved to −i∞ leaving
the remaining (neutral) system at rest in the uniform flow −anΓ1/2. Removing this
uniform background reveals a translating neutral system.

The formula (4.3) for p allows us to say a little more about the residual translating
system. The integer parameter an no longer appears in any exponent of any term
of p, so that the left-hand side of equation (4.1) is a polynomial in an. Since this
polynomial is known to have the value zero for all sufficiently large integers an, it
must be the zero polynomial. Thus (4.1) continues to hold for any complex value for
an. In other words, p and q as defined in (4.2), (4.3) with dn =0 and an an arbitrary
complex number are polynomial solutions of (4.1) with Γ = −1, S = 0 and 2v̄ = anΓ1

so long as a0, . . . , an−1 are distinct positive integers.
This leaves us with the following picture: given n distinct positive integers

a0, . . . , an−1, there is a corresponding solution set of translating point vortex street
configurations with n complex parameters, one parameter being the translation
velocity; certain of these configurations are limits of families of stationary street
configurations with one additional parameter.

When n is small the determinants in (4.2), (4.3) can be computed quickly. The
simplest polynomial pair is obtained when n=1: combining and normalizing some
constants, we have

q = ua0 − 1,

p = (a0 − a1) + (a0 + a1)u
a0 + tua1 ((a0 − a1)u

a0 + (a0 + a1)),

t being the single complex parameter. The a0 negative vortices in each period are
evenly spaced along a line in the x-direction, while the positions of the a0 +a1 positive
vortices depend on the parameter t . As t goes to zero, a1 of the positive vortex streets
move off to infinity leaving a neutral configuration behind. The symmetry present
in the polynomial p clearly comes from the determinant (4.3), but a more general
explanation appears in § 6.

5. Connected stationary and translating configurations for more general
circulations

In this section we establish that the pattern just observed for positive and negative
unit strength vortices can also be found in other vortex street systems that have
two or more circulation values. The primary restrictions are that all circulations
have the same sign save for one, and are half-integral multiples of the negative of
this exceptional circulation. The basic technique, reduction of order, has been used
to find stationary vortex configurations in the infinite plane (Loutsenko 2004) and
is described in § 5.1. The integral relation is recast as a more convenient differential
relation in § 5.2, yielding a streamlined algorithm and the degree relations that validate
the claim that began this paragraph. Some examples illustrating the general case are
given in § 5.3.

5.1. Construction of a continuum of solutions to (3.1)

Suppose P1, . . . , Ps satisfy the differential equation (3.1). After multiplication by
P1, this equation can be viewed as a linear second-order differential equation in
P1 (holding the other polynomials constant), so that the method of reduction of
order can be used to find the second independent solution P̃1. Recall the definitions
Q(u) =

∏
P Γα

α =
∏

(u−uk)
Γk and χ = (2v̄+S)/Γ1. A straightforward calculation shows
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that the functions P̃1, P2, . . . , Ps also satisfy (3.1), where

P̃1 = P1

∫
Q−2/Γ1uχ−1 du. (5.1)

We shall now see that under certain circumstances P̃1 is a polynomial, so that for
arbitrary constants C1 and C2 the polynomials (C1P1 + C2P̃1), P2, . . . , Ps satisfy (3.1),
and the roots of these polynomials form a parametrized family of vortex street
configurations that will be proved below to be connecting stationary and translating
systems. The roots of the first polynomial are determined by the ratio C2/C1, so the
solution set has one complex dimension.

For simplicity, assume that (i) the roots of P1 are all non-zero, and are not roots
of the other polynomials P2, . . . , Ps . It is clear that P̃1 can only be a polynomial if
the integrand of (5.1) is a rational function with no poles other than at the zeros of
P1. Therefore assume further that (ii) each −2Γα/Γ1, 1 <α is a positive integer and
(iii) χ is a positive integer. The roots of P1 are necessarily distinct, because otherwise
the left-hand side of (2.4) would have a double pole at the repeated root, and hence
could not be zero. Thus under assumptions (i)–(iii) the integrand of (5.1) is a rational
function with a pole of order two at each root of P1. Let uj be a root of P1 and
Qj (u) =

∏
k:k �=j (u − uk)

Γk . The residue of the integrand at u = uj is zero exactly when
the relation

0 =
d

du

∣∣∣∣
u=uj

(
Q

−2/Γ1

j uχ−1
)

holds, or equivalently,

(2/Γ1)Q
′
j (uj )uj = Qj (uj )(χ − 1). (5.2)

To see that (5.2) does indeed hold, substitute vj = v into (2.2):

2v̄ =
∑
k:k �=j

Γk

uj + uk

uj − uk

=
∑
k:k �=j

Γk

(
−1 + 2uj

1

uj − uk

)
= Γ1 − S + 2uj

Q′
j (uj )

Qj (uj )

and recall that 2v̄ + S − Γ1 = Γ1(χ − 1). Thus the residues of these poles are all zero,
the only singularities of the integral are simple poles – that is, there are no logarithmic
terms on the right-hand side of (5.1) – and P̃1 is a polynomial.

5.2. A first-order differential relation for P̃1

Equation (5.1) does not represent the most efficient method for computing P̃1.
Divide (5.1) by P1, differentiate and multiply by uP 2

1 to obtain the relation

u
(
P̃ ′

1P1 − P̃1P
′
1

)
= uχ

∏
1<α

P −2Γα/Γ1
α . (5.3)

This shows that the polynomial P̃1 may be found from P1, . . . , Ps by solving a
system of linear equations in its coefficients. Of course P̃1 = P1 is a solution to the
homogeneous equation u(P̃ ′

1P1 − P̃1P
′
1) = 0, corresponding to the term resulting from

the constant of integration in equation (5.1). Suppose aj , ãj and cj are the coefficients

of uj in P1, P̃1 and the polynomial
∏

1< α P −2Γα/Γ1
α respectively, the ãj being unknown.

Then comparing like powers of u on the two sides of (5.3) produces a sequence of
linear equations: ∑

j+k=m

ãj ak(j − k) = cm−χ , m = 0, 1, . . . (5.4)
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The solution can be found by setting ãj = 0 for j <χ and then using (5.4) to compute

sequentially the coefficients ãχ , ãχ+1, etc. Thus the full solution C1P1 + C2P̃1 to (5.3)
will have the form C1P1 + C2u

χ h(u) for some polynomial h(u) = c0/(χa0) + · · ·.
Equation (5.3) implies that the degree of P̃1 satisfies the relation

deg P1 + deg P̃1 = χ − (2/Γ1)
∑
1<α

Γα deg Pα. (5.5)

Now S =
∑

α Γα deg Pα is the total circulation of the system corresponding to the roots

of P1, . . . , Ps . Let S̃ denote the total circulation of the new system that substitutes
P̃1 for P1; then (5.5) reduces to S + S̃ = Γ1χ , i.e. S̃ = 2v̄. If S �= 0 then the initial
configuration is stationary and the new configuration is neutral, S̃ =0, and contains
χ fewer vortices of circulation Γ1 per period; whereas if the original configuration is
neutral then the new configuration will be stationary and contain χ = 2v̄/Γ1 additional
vortices of circulation Γ1. We conclude therefore that the vortex street configurations
associated with the polynomials (C1P1 + C2P̃1), P2, . . . , Ps will be stationary for non-
zero C1, C2, and tend to a translating configuration as the constant multiplying the
polynomial of larger degree goes to zero. Thus the one-dimensional set of solution
polynomials connects stationary and translating configurations.

A remark may be made in passing about the differential relation (5.3) used to
compute P̃1. Analogous relations generate the sequence of polynomials describing non-
periodic stationary configurations of unit vortices (Burchnall & Chaundy 1930; Adler
& Moser 1978), and another sequence of polynomials (Loutsenko 2004) for stationary
configurations when the circulation ratio is −2. The idea is to interchange the roles of
P1 and P2 after each application of (5.1), with the constants of integration becoming
free parameters in the polynomials. Unfortunately, in the present circumstance the
factor uχ on the right-hand side of (5.3) is an obstacle to the creation of a similar
sequence of polynomials for vortex streets, since χ would change sign with each
step. Fortunately, that same factor allows one to create an infinite number of one-
dimensional families of stationary configurations by having the initial translating
configuration move at different velocities (different integral values of χ .)

5.3. Examples

The construction described above is at its most flexible when starting with a
neutral system. By choosing different translation velocities, one can create many
one-dimensional families of stationary configurations.

As a simple example, we may begin with a translating configuration consisting
of streets with circulations ±1. The case of one negative street will be covered by
the explicit formula (6.2) in the next section, so begin instead with two positive and
two negative streets. The determinant formulae (4.2), (4.3) allow us to quickly find
polynomials P1 = (2 + χ)u2 + (2 − χ) and P2 = u2 − 1 determining the positive and
negative streets respectively. To find a family of stationary configurations with one
additional positive street, set χ = 1 and solve the system (5.4) to obtain P̃1 = u3/3+u,
so that the positive streets are determined by the roots of C1(3u2 +1)+C2u(u2/3+1).
It is just as easy to add m positive streets by following the same procedure with
χ = m, so long as m �= 2. A symmetry may be observed between P1 and P̃1 in all these
cases; this is discussed in § 6.

For an example involving more than two circulations that is not overly complicated,
consider the neutral system of three vortex streets of circulation Γ1 = 1 and one each of
circulations Γ2 = −1/2 and Γ3 = −5/2; this system was considered in § 3. Suppose one
wishes to construct the continuum of stationary configurations with total vorticity 5
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Figure 5. Stationary vortex street configurations for the polynomials (5.6), (5.7). The symbols
+, −,= represent vortex streets with circulations 1, −1/2, −5/2 respectively. Frame ticks at
integer x and y values emphasize the periodicity. The value of the parameter t is 1 in (a) and
(1 + i)/300 in (b).

that connect with this translating system. Equation (3.1) with χ = 2v̄ = 5 is satisfied
by the polynomials

P1(u) = 231u3 − (266 + 14i
√

35)u2 + (129 + 12i
√

35)u − (24 + 3i
√

35),

P2(u) = u − (29 + 16i
√

35)/99, P3(u) = u − 1.

}
(5.6)

The polynomial P̃1 will have degree 8; application of (5.4) yields (up to multiplicative
constant)

27u8 − (132 + 3i
√

35)u7 + (238 + 14i
√

35)u6 − (168 + 21i
√

35)u5 + tP1(u) (5.7)

with free complex parameter t . In the limit t → ∞ five streets move off to −i∞,
leaving a neutral translating configuration. This translating state is taking shape in
figure 5(a). This configuration has the appearance of a neutral intermittent wake
interacting weakly with a simple shear layer, with some rather intricate streamlines
as seen in figure 6. The five streets move in the opposite direction as t → 0, leaving a
translating configuration that is the reflection in the y-axis. Several parameter values
cause positive vortices to coalesce on one of the negative vortices, as suggested by
figure 5(b) where the weaker negative vortices combine with positive ones to form
stationary ‘tripoles’.

To add six rather than five vortices to the system, merely go back to (3.1) and use
χ =6 to calculate the starting configuration

P1(u) = 546u3 − (792 + 18i
√

105)u2 + (441 + 18i
√

105)u − (90 + 5i
√

105),

P2(u) = u − (73 + 12i
√

89)/255, P3(u) = u − 1

and again apply (5.4).
By relaxing the simplifying assumption (i) used above, the procedure can also

be used on translating configurations that have some streets at u =0, although
the zero-residue criterion (5.2) is not valid in this case. For instance, suppose
(Γ1, Γ2, Γ3) = (1, −1/2, −3/2) and the initial translating configuration corresponds
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Figure 6. Some streamlines for the configuration in figure 5(a).

to Q = u2(u − 1)−1/2(u + 1)−3/2 and χ =2. An application of (5.1) yields the new
polynomial 1 + 4u + t u2 + 4u3 + u4 with complex parameter t . As t → ∞, half the
streets of circulation 1 move to i∞ and the other half move to −i∞. Many similar
solution families (including the one mentioned in the introduction) can be generated
with ease in this way.

6. Partially symmetric systems
The full solution C1P1 + C2u

χ h(u) to (5.3) has a particularly simple form if S = 0
and the zeros of the other polynomials are symmetrically distributed. Suppose that
the polynomial Pj has the same roots as the reversed polynomial R(Pj ) for each
j > 1; this means that point vortices of circulation Γj are symmetric with respect
to reflection through the origin. Suppose further that P1, . . . , Ps satisfy (3.1) with
S = 0 and 2v̄ = mΓ1 for some positive integer m. Using the invariance of (3.1) under
the involution Pα �→ R(Pα), v �→ −v we find that R(P1), P2, . . . , Ps satisfy (3.1)
with S = 0 and 2v̄ = −mΓ1. As observed at the end of § 2, the configuration can be
converted to a stationary one by adding m vortices of circulation Γ1 at u = 0, so
that umR(P1), P2, . . . , Ps satisfy (3.1) with S = mΓ1 and 2v̄ = 0. Since the parameters
v and S only appear in (3.1) as the sum 2v̄ + S, it is clear that P1, P2, . . . , Ps and
umR(P1), P2, . . . , Ps satisfy the same differential equation. In other words, h(u) = R(P1).

The simplest example has q =(1 − u) so that (4.1) becomes Gauss’s hypergeometric
differential equation,

u(1 − u)p′′ + {(1 − χ) − u(Γ + (Γ − χ) + 1)}p′ − Γ (Γ − χ)p = 0. (6.1)

Assuming a total of n> 2 streets, if the system is not neutral then Γ − χ = 1 −
n= − deg p, whereas for neutral systems Γ = 1 − n and Γ − χ =(Γ2 − 2v̄)/Γ1. One
solution to (6.1) is the hypergeometric series

p(u) = 1 +
Γ (Γ − χ)

1 − χ
u +

Γ (Γ + 1)(Γ − χ)(Γ − χ + 1)

2!(1 − χ)(2 − χ)
u2 + · · · (6.2)

For a neutral system (Γ = 1 − n) the series terminates, i.e. p(u) is a polynomial,
so long as χ = 2v̄/Γ1 is not one of the integers 1, . . . , n − 1. Hence the method of
the preceding section can be used to generate families of stationary configurations
containing n or more additional vortices of strength Γ1. Since q and R(q) have the
same root, it follows from the discussion above that p̃ = uχR(p). For example, starting
with a neutral system of three vortices of strength 1 and one of strength Γ = −3,
putting χ = 5 in (6.2) gives the hypergeometric polynomial 1 − 6u + 14u2 − 14u3,
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Figure 7. Stationary vortex street configurations corresponding to (6.3). The value of the
parameter C1/C2 is 1000 (a), 10 (b) and 1.005 (c).

leading directly to a one-parameter solution to (4.1):

q = u − 1, p = C1(1 − 6u + 14u2 − 14u3) + C2u
5(u3 − 6u2 + 14u − 14). (6.3)

Some representative configurations are shown in figure 7. Figure 7(a) can be inter-
preted as a translating wake-like configuration interacting weakly with a shear layer,
and the other figures show the result of bringing these entities into close contact.

There is another symmetry of equation (3.1), related to decreasing the period of the
street configuration, that allows other solution families to be described easily. Suppose
that P1(u), . . . , Ps(u) is a solution to (3.1) and k is a positive integer. It is not difficult to
show that (3.1) and (4.1) continue to be satisfied after the substitutions Pα(u) �→ Pα(u

k),
v �→ kv and χ �→ kχ . (It is implicit that the total circulation after substitution is k times
its previous value.) The number of added streets in the stationary configurations need
not be a multiple of k, however, leading to interesting accommodations between the
fixed streets and the parameter-dependent streets. For example, starting with a neutral
system of three vortices of strength 1 and one of strength −3, making the substitution
u �→ u3 and then putting χ =5 leads to the solution polynomials q = u3 − 1 and

p = C1(−1 + 21u3 + 231u6 + 154u9) + C2u
5(−u9 + 21u6 + 231u3 + 154). (6.4)

Some street configurations are shown in figure 8.
Another interesting class of examples involves an ‘alternating street’. For a three-

species system (s = 3) with Γ1 = 1, let deg P1 = −(Γ2 +Γ3) and set P2 = u−1, P3 = u+1
so that the two polynomials combine to create a street with vortex spacing 1/2 and
vortex circulations that are alternately Γ2 and Γ3. With the assistance of a computer
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Figure 8. Stationary vortex street configurations corresponding to polynomials (6.4). The
value of the parameter C2/C1 is 0.25 (a) and 1.01 (b).

algebra system, one can show that the linear system of equations determining the
coefficients of a polynomial P1 satisfying (3.1) has a non-zero solution only when Γ2

and Γ3 are negative integers. For example, circulations −1, −2 yield the polynomial

P1(u) = 1 +

(
χ + 3

χ − 1

)(
−u − u2 +

χ + 1

χ − 3
u3

)
.

The method of the previous section can now be used to create stationary
configurations by adding any number of positive vortices except for 1 or 3. Adding 2,
for example, and observing R(P2) = −P2, R(P3) = P3, yields the polynomial

C1(1 − 5u − 5u2 − 15u3) + C2u
2(u3 − 5u2 − 5u − 15). (6.5)

Figure 9 shows representative stationary configurations.

7. Translating and stationary configurations with Γ = −2

There is no known closed form for solutions to (4.1) in the case Γ = −2 of the sort
discussed in § 4, but some polynomial solutions may be found by direct calculation. In
addition to isolated solutions there are also solutions with a free parameter that are
analogous to polynomial solutions in the Γ = −1 case. These are found by picking
integers 0< m < n and giving q the special form

q(u) = un + un−m + tum + t

(
(n − 2m)

n

)2
(2n − 3m)2 + 3(m2 − χ2)

(2n − m)2 + 3(m2 − χ2)

in (4.1), which then becomes a recursion relation for the coefficients of p. The single
free parameter t appears in both p and q , as does the translation parameter χ (in
contrast to the configurations of § 4, in which q did not vary with χ at all.) A typical
example is

q(u) = u5 + u3 + tu2 + t
(3χ2 − 28)

25(3χ2 − 76)
,
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Figure 9. Stationary vortex street configurations for the ‘alternating street’ example (6.5). The
symbols –, = and + indicate vortices of circulation −1, −2 and 1 respectively. The three values
of the parameter ratio C2/C1 are 1.2 (a), −1.04 (b) and −10 i (c).

p(u) = u10 + 2
(χ − 4)

(χ + 2)
u8 + 2t

(χ − 6)

(χ + 3)
u7 +

(χ − 2)(χ − 4)

(χ + 2)(χ + 4)
u6

+ 4t
(χ − 6)(χ − 4)(39χ2 − 316)

25(χ + 2)(χ + 3)(3χ2 − 76)
u5 + t2 (χ − 3)(χ − 6)

(χ + 3)(χ + 6)
u4

+ 2t
(χ − 2)(χ − 4)(χ − 6)(3χ2 − 28)

25(χ + 2)(χ + 3)(χ + 4)(3χ2 − 76)
u3

+ 2t2 (χ − 3)(χ − 4)(χ − 6)(3χ2 − 28)

25(χ + 2)(χ + 3)(χ + 6)(3χ2 − 76)
u2

+ (t/25)2
(χ − 2)(χ − 3)(χ − 4)(χ − 6)(3χ2 − 28)2

(χ + 2)(χ + 3)(χ + 4)(χ + 6)(3χ2 − 76)2
.

The translating configurations make up a one-dimensional set for any integral χ other
than −2, −3, −4 or −6. Figure 10 shows several configurations based on this trans-
lating configuration, with five vortices of circulation 1 added. Because the translating
configuration has a free parameter, the result is a two- (complex) dimensional set of
stationary configurations. One parameter affects all vortices while the other affects the
positions of the positive vortices only. As with previous examples, there are values of
the parameters that cause p, q to have roots in common. Similarly one can construct
other families by adding k streets of circulation −2 as long as k �= 1, 2 or 3.

8. Summary
In this paper, a class of stationary periodic point vortex configurations having a

free complex parameter was proved to exist, subject to some restrictions on the vortex
circulations. The basic tool was a differential equation for the polynomials describing
the configurations; this differential equation is equivalent to a system of polynomial
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Figure 10. Several stationary vortex street configurations with fifteen vortices of circulation
1 and five of circulation −2.

equations in the coefficients of the polynomials. For one value of the parameter, the
configurations take on a limiting form that is a neutral translating configuration.
Conversely, given such a translating configuration, there is an effective procedure for
determining the stationary configurations that involves solution of a linear system of
equations. Several methods for finding translating configurations were presented. One
can solve the differential equation directly to find simple configurations. Alternatively,
one can take advantage of explicit forms for systems with circulations 1 and −1 (§ 4),
or circulations 1 and −2 (§ 7), or use a hypergeometric function (§ 6). In addition,
some formal properties of the polynomials related to symmetries can be exploited to
further simplify the calculation.

All these configurations represent singular solutions of the two-dimensional Euler
equation, limiting somewhat the relevance to real fluid flows. A natural next step
would be to seek analogous non-singular solutions, i.e. configurations with finite-area
vortices. The stability properties of the point vortex configurations could also be
investigated. Actually, since even the Kármán configuration is unstable, these new
configurations are doubtless unstable as well; however the dominant unstable modes
would be of interest. A generalization of the Kármán wake drag formula to these
more general translating configurations might be useful in specialized settings, such
as the study of fish propulsion. Indeed it is tempting to think that these configurations
have an analogue in axisymmetric periodic vorticity distributions, such as might be
found in the wake of a swimming jellyfish. Finally, the connection if any between
these new solution polynomials and solutions to integrable dynamical systems, in
analogy with that found between multisoliton solutions to the KdV hierarchy and the
solution polynomials for the non-periodic case (Adler & Moser 1978), remains to be
investigated.
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